Hardware

IPC (Instructions Per Cycle)

In computer architecture, instructions per cycle (IPC), commonly called Instructions per clock is one aspect of a processor’s performance: the average number of instructions executed for each clock cycle. It is the multiplicative inverse of cycles per instruction.

The calculation of IPC is done through running a set piece of code, calculating the number of machine-level instructions required to complete it, then using high-performance timers to calculate the number of clock cycles required to complete it on the actual hardware. The final result comes from dividing the number of instructions by the number of CPU clock cycles.

The number of instructions per second and floating point operations per second for a processor can be derived by multiplying the number of instructions per cycle with the clock rate (cycles per second given in Hertz) of the processor in question. The number of instructions per second is an approximate indicator of the likely performance of the processor.

The number of instructions executed per clock is not a constant for a given processor; it depends on how the particular software being run interacts with the processor, and indeed the entire machine, particularly the memory hierarchy. However, certain processor features tend to lead to designs that have higher-than-average IPC values; the presence of multiple arithmetic logic units (an ALU is a processor subsystem that can perform elementary arithmetic and logical operations), and short pipelines.

When comparing different instruction sets, a simpler instruction set may lead to a higher IPC figure than an implementation of a more complex instruction set using the same chip technology; however, the more complex instruction set may be able to achieve more useful work with fewer instructions.

Related Articles