The Digital Signature Algorithm (DSA) is a Federal Information Processing Standard for digital signatures, based on the mathematical concept of modular exponentiation and the discrete logarithm problem. DSA is a variant of the Schnorr and ElGamal signature schemes.:486
The National Institute of Standards and Technology (NIST) proposed DSA for use in their Digital Signature Standard (DSS) in 1991, and adopted it as FIPS 186 in 1994. Four revisions to the initial specification have been released. DSA is patented but NIST has made this patent available worldwide royalty-free.
Overview
The DSA algorithm works in the framework of public-key cryptosystems and is based on the algebraic properties of modular exponentiation, together with the discrete logarithm problem, which is considered to be computationally intractable. The algorithm uses a key pair consisting of a public key and a private key. The private key is used to generate a digital signature for a message, and such a signature can be verified by using the signer’s corresponding public key.
The digital signature provides message authentication (the receiver can verify the origin of the message), integrity (the receiver can verify that the message has not been modified since it was signed) and non-repudiation (the sender cannot falsely claim that they have not signed the message).