Hybrid fiber-coaxial (HFC) is a telecommunications industry term for a broadband network that combines optical fiber and coaxial cable. It has been commonly employed globally by cable television operators since the early 1990s.
In a hybrid fiber-coaxial cable system, the television channels are sent from the cable system’s distribution facility, the headend, to local communities through optical fiber subscriber lines. At the local community, a box called an optical node translates the signal from a light beam to radio frequency (RF), and sends it over coaxial cable lines for distribution to subscriber residences. The fiberoptic trunk lines provide adequate bandwidth to allow future expansion and new bandwidth-intensive services.
The fiber optic network extends from the cable operators’ master headend, sometimes to regional headends, and out to a neighborhood’s hubsite, and finally to a coaxial cable node which serves anywhere from 25 to 2000 homes. A master headend will usually have satellite dishes for reception of distant video signals as well as IP aggregation routers. Some master headends also house telephony equipment for providing telecommunications services to the community.
A regional or area headend/hub will receive the video signal from the master headend and add to it the public, educational, and government access (PEG) cable TV channels as required by local franchising authorities or insert targeted advertising that would appeal to a local area. The various services are encoded, modulated and upconverted onto RF carriers, combined onto a single electrical signal and inserted into a broadband optical transmitter.
This optical transmitter converts the electrical signal to a downstream optically modulated signal that is sent to the nodes. Fiber optic cables connect the headend or hub to optical nodes in a point-to-point or star topology, or in some cases, in a protected ring topology.